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Abstract 

The well-known acentric and centric distributions 
apply, asymptotically in the number of atoms in the 
unit cell, when there is no crystallographic symmetry or 
centrosymmetry only. Series expansions, involving 
Laguerre or Hermite polynomials, can be obtained, 
which take into account paucity of (heterogeneous) 
atoms and higher space-group symmetries. The 
asymptotic as well as the generalized distributions are 
further modified if (i) the crystal exhibits partial 
(non-space group) symmetry, and (ii) if some atoms 
exhibit appreciable dispersion. This article deals with 
the generalization of the asymptotic 'subcentric' distri- 
bution of the normalized intensity 

P(z) dz = (or 2 - fl2)1/2 exp(-az)  Io(~Z) dz 

which accommodates both partial (non-crystallo- 
graphic) centrosymmetry and effects of dispersion. A 
four-term Gram-Charlier expansion with appropriate 
orthogonal polynomials has been derived for the 
subcentric distribution and detailed expressions for the 
required moments of z have been obtained for the case 
of dispersion. This generalization, i.e. the orthogonal 
polynomials, the moments of z and the asymptotic 
subcentric distribution, incorporates the generalized 
acentric and dispersionless centric expansions as 
limiting cases. The above derivation has been brought 
to completion using computer-algebraic techniques, 
which permit the use of well-established but rarely used 
mathematical methods in an ab-initio generalization of 
a given asymptotic distribution of intensity. 

Introduction 

For non-centrosymmetric crystals with sufficiently 
large numbers of atoms in the unit cell, the probability 

* Present address: Crystallographic Data Centre, University 
Chemical Laboratory, Lensfield Road, Cambridge CB2 1EW. 

of a randomly chosen reflection having a normalized 
intensity between z and z + dz is given by 

P(z) dz = exp ( -z )  dz (1) 

and for centrosymmetric crystals by 

P(z) dz = (2zcz) -1/2 exp(-z /2)  dz (2) 

(Wilson, 1949), where z = I/S,, I is the (corrected) 
integrated intensity of the reflection and 27 is the sum of 
the squares of the moduli of the atomic scattering 
factors (Wilson, 1942, 1978). When the number of 
atoms in the unit cell is too small, particularly when 
there is great inhomogeneity of scattering factor, the 
above asymptotic expressions can be expanded into 
series based on orthogonal polynomials: Hermite for 
the centric distribution (2) and Laguerre for the 
acentric distribution (1) (see, for example, Karle & 
Hauptman, 1953; Hauptman & Karle, 1953; Bertaut, 
1955; Klug, 1958; Shmueli, 1979; Shmueli & Wilson, 
1981). Some applications of such symmetry- and 
composition-dependent expansions were recently illus- 
trated (Shmueli, 1982). When non-crystallographic 
symmetry is present the asymptotic distributions take 
other forms, bicentric (Lipson & Woolfson, 1952), 
hypercentric (Wilson, 1952; Rogers & Wilson, 1953) 
or sesquicentric (Wilson, 1956). If the structure is 
intermediate between centrosymmetric and non-centro- 
symmetric, still other asymptotic distributions, for 
which the name 'subcentric' might be coined, appear. 
Examples of subcentric distributions arising from 
partial structural symmetry are given by Srinivasan & 
Parthasarathy (1976, ch. 3), and Wilson (1980a) has 
shown that an asymptotic distribution of the same 
analytic form appears when dispersion produces an 
effective departure from centrosymmetry. These hyper- 
centric and subcentric distributions can be expressed in 
closed form in some cases and can be expanded in 
series in terms of orthogonal polynomials as men- 
tioned above, but, as Rogers & Wilson (1953) pointed 
out, convergence is slow. This was a serious difficulty 
in 1953, but with the present-day computing facilities 
there is no longer a problem in summing many terms of 
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the series as long as their analytic forms are available. 
Until recently, the main problem was in constructing 
the required theoretical expressions for the orthogonal 
polynomials and problem-dependent moments of inten- 
sity or related quantities, even if the mathematical 
procedures underlying such constructions were known. 
As will be seen from this paper, the often forbidding 
algebra which is involved in such derivations (except 
for a few simple asymptotic distributions) does not 
present a serious difficulty since all or most of these 
tedious manipulations can now be performed by 
symbolic computer programs which perform a variety 
of algebraic operations and can also output the results 
so that they can be directly incorporated into programs 
for relevant numerical computations. A recent version 
of the LISP-based R E D U C E  system (Hearn, 1973) 
was employed in this work for such algebraic 
manipulations and 'program writing'. 

The present paper is concerned with the 
generalization of the asymptotic subcentric distri- 
bution, for which an approximating expansion based on 
appropriate orthogonal polynomials will be derived, 
and with a theoretical treatment of the effects of 
space-group symmetry, atomic heterogeneity and 
dispersion on the distribution of the normalized 
intensity. 

Mathematical background 

Although the mathematical background of our 
derivation is amply documented in the literature, it will 
be summarized here both for the sake of completeness 
and because the general relationships to be shown were 
actually used as they stand. 

Given an experimental distribution Pe×p(z)dz which 
departs from a known asymptotic distribution 
P~°)(z) dz, where P~°)(z) accounts for the basic proper- 
ties of the experiment that gave rise to Pe×p(z)dz, we 
can try to approximate the experimental distribution by 
a generalized expansion of the form 

Px(z) dz = • gk fk( z ) P¢°)(z) dz, (3) 
k 

where {fk(z)} is a set of orthogonal polynomials 
obeying the relationship 

b 

f fk(z) ft(z) P(°)(z) dz = fikl; (4) 
a 

6kt is the Kronecker symbol and [a,b] is the range of 
existence of all the functions of z involved. Making use 
of (3) and (4), the expansion coefficients gk in (3) are 
obtained as 

b 

gk= f A(z )P~(z )dz  (5) 
a 

(SzegS, 1939; Cram+r, 1951). 

It can be shown that if the distribution 

2 

N~°~(z) = f P~°)(z) dz (6) 
0 

is non-decreasing and if all the moments 

b 

c k = f z k P~°~(z) dz (7) 
o 

of the asymptotic distribution exist, the polynomials 
fk(z) are uniquely associated with P~°)(z) ]often termed 
the weight function of the orthogonality relationship 
(4)] and the coefficients of the powers of z, in these 
polynomials, are expressible in terms of the moments c k 
of the asymptotic distribution (cf  SzegS, 1939; 
Cram~r, 1951). Moreover, it is seen from (5) that the 
expansion coefficients gk are given by averages of the 
corresponding polynomials with respect to the 
generalized distribution, and hence these coefficients 
can be determined by replacing the powers z t, in the 
polynomials, with their mean values or moments (zl), 
which take into account the problem that caused the 
departure of Pe×p(z) from Pt°~(z) and hence called for a 
generalization of the latter. 

The explicit expression for the polynomial of degree 
n is given by 

2n g n -  I " "  Z 1 

C 2 n - 1  C 2 n - 2  " '"  Cn C n - 1  

f.(z)=K. : : " . .  : : ( 8 )  

Cn + 1 C n • • • C 2 C 1 

Cn C n - I  " ' "  CI CO 

(el  Szeg6, 1939), where the Ck'S are given by (7) and 
the normalization constant is given by K n = 
(D,,_ ~ D.) -1/2, where the determinant D.  can be obtained 
from that in (8) by replacing the powers z", z "- ~ . . . . .  z ° 
with the moments c2n, c2._ l, ..., c., respectively (el  
Szeg6, 1939). It is, however, more convenient to rewrite 
(8) as 

fn(z) = K n ~. dnkZ k, (9) 
k = 0  

where d,k is the signed minor corresponding to the 
element z k in the first row of the determinant in (8). 
Then, making use of the requirement 

b 

f [f,(z)l 2 P~°)(z)dz -- 1 (10) 
a 

and equation (7), we obtain 

Kn= ~ ~ d,,kd,aCk+ t . (11) 
k = 0  / = 0  
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Since fo(z)  must equal unity, the generalized expansion 
(3) can thus be written as 

Of course, for the above equations to be exactly 
obeyed, the asymptotic distribution must be normalized 
to unity and it can be shown that the same holds for 
P~(z) even if (12) is terminated after a finite number of 
terms. 

Hence, given an asymptotic distribution which 
satisfies (6) and (7), the quantities required for its 
generalization are its moments c k, the minors d,, k and 
the problem-dependent mean values (moments) (zk). 

The subcentric distr~ution 

The general form of the subcentric distribution, 
applicable to partial symmetry (Srinivasan & 
Parthasarathy, 1976, ch. III) and dispersion (Wilson, 
1980a), is 

P~°l(z)dz  = y e x p ( - a . Z ) I o ( f l z ) d z ,  (13) 

where I 0 is a modified Bessel function of the first kind 
(Abramowitz & Stegun, 1972, ch. 9). The parameters 
t~, fl and ? are connected by two relations: 

),2 = ~2 _ f12 = R; (14) 

the first arises because any probability distribution has 
unit area, and the second arises because in the present 
applications the intensity has been normalized so that 
(z)  = 1. In the rest of this paper, therefore, y is 
replaced by a~/2. 

In the case of dispersion, we have 

and 

,~ '2  

a -  (15) 
Z'2 _ S 2 

$2, 
f l -  - -  (16) 

2,2 _ S 2 

(Wilson, 1980a), where S is the modulus of the sum of 
the squares of the complex scattering factors (Wilson, 
1978, 1980a). Also, a rearrangement of the distri- 
bution parameters in equation (3.84) of Srinivasan & 
Parthasarathy (1976) shows that their asymptotic 
distribution, for the case of several centrosymmetric 
atomic groups being present in the unit cell of the space 
group P1, reduces to (13) with S in (15) and (16) 
replaced with 2,c, the sum of the squares of the 
scattering factors of atoms which belong to the 
centrosymmetric groups (Srinivasan & Parthasarathy, 

1976). It is interesting to note that ct tends to unity if S 
(for dispersion) or 2,c (for partial centrosymmetry) tend 
to zero and, since fl must then tend to zero, (13) 
reduces in this limit to (1), the asymptotic acentric 
distribution. This is obvious in the case of partial 
centrosymmetry, and in the case of dispersion this 
corresponds to uncorrelated real and imaginary parts 
of the structure factor - strictly valid in the acentric 
case (Wilson, 1980a). 

In the other limiting situation, i.e. when S or 2,c tend 
to 2,, a tends to infinity. In the case of dispersion this 
corresponds to a tendency to the ideal centric distri- 
bution (Wilson, 1980a), while in the case of partial 
symmetry this means that the unit cell of P1 is occupied 
(in the limit) by centrosymmetric atomic groups only. 
As will be seen below, the limiting asymptotic distri- 
butions must be the ideal centric one, given by (2), in 
both applications. 

The moments of (13) can be found making use of the 
known definite integral 

oo 

f t" e x p ( - t  cosh O)Iv(t  sinh O)dt 
0 

= F(/I + v + 1)P~v(cosh 0) (17) 

(Watson, 1922; Gradshteyn & Ryzhik, 1980), where 
PZ v is a Legendre function. With v = 0 and ¢t an integer 
n, the nth moment of (13) is then given by 

0(3 

c n = t~ 1/2 f z" e x p ( - a z ) l o ( f l z ) d z  
0 

= n! Ct-n/2Pn(Ctl/2 ), (18) 

where P,,(x)  are the usual Legendre polynomials 
[P0 = 1, PI = x, P2 = ½( 3x2 - 1), etc.]. This result for 
the moments of the asymptotic subcentric distribution 
is much simpler than that given by Srinivasan & 
Parthasarathy (1976) in terms of hypergeometric 
functions. 

Since all the expressions required for setting up the 
subcentric version of (12) were computer generated, it 
was more convenient to rewrite (18) in terms of the 
Rodriguez formula for Legendre polynomials as 

d" 
c, = ( 2 x ) - " - -  (x 2 - I)", (19) 

d x  n 

where x = ~t 1/2, and to use (19) for the generation of 
moments up to n = 8. 

These moments were used in expanding the deter- 
minants in (8) for n = 1, 2, 3 and 4, whereafter the 
coefficients d,, k of the powers of z were automatically 
separated and expressions for the corresponding 
normalization constants were obtained making use of 
(11). Thus, the expressions for the orthonormal 
polynomials fl(z), f2(z) ,  f3(z)  and f4(z) ,  associated with 
the asymptotic subcentric distribution (13), as well as 
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all the data (apart from the mean values (zk)) required 
for the construction of a four-term generalized expan- 
sion (12), have been obtained. Finally, five terms of 
(12) are available but in the present case the second 
term vanishes identically since (z) = 1 (el Appendix 
B). 

Detailed results of this calculation have been 
deposited* along with a listing of the Algol-like 
program of REDUCE instructions used. It was also 
found convenient to perform the substitutions, which 
lead to the limiting distributions, in the same com- 
putation and the results of some of these tests are also 
included in the deposited material. Of course, these 
reductions to limiting cases also serve as a check on the 
correctness of the computation. Thus, for a = 1, e, 
reduced to n! and the normalized polynomials f ,(z) to 
Laguerre polynomials L,(z), as expected. It should be 
noted, however, that polynomials generated by (8) are 
only orthogonal but not standardized, and thus, for 
example, the (-1)"  factor standardizing the Laguerre 
polynomials (ef. Abramowitz & Stegun, 1972) i s  
missing. This is of no importance as far as (12) is 
concerned but should be kept in mind when (8) is used 
as a generator of orthogonal polynomials for other 
applications. The other limiting case, ~t ~ m, yielded 
e, = (2n - 1)!! and the determinants for fk(Z) reduced 
to Hermite polynomials thus confirming that this 
limiting case corresponds to the generalized centric 
distribution (ef. Shmueli & Wilson, 1981). The limiting 
values of e, in the latter case can also be obtained 
directly using the general definition of the Legendre 
polynomials (e.g. Abramowitz & Stegun, 1972, ch. 22). 
After some rearrangement we obtain 

( 2 n -  1)!! 
(1-n/2 Pn(•l/2) -- 

n! 

[ n ( n - 1 )  t~-x O(~r2)](20) 
× 1 -  2 ( 2 n - 1 )  + 

and as a tends to infinity, all the terms on the r.h.s. 
of (20), except the first one, tend to zero and we have 
from (18) 

c,, = ( 2 n -  1)!! (21) 

for this limiting case. These moments define the centric 
distribution (2) and their insertion into (8) is indeed 
expected to give Hermite polynomials. The first four 
moments of (13) and the first two polynomials, 
generated as described above, are given in Appendix B. 

* This material, entitled Computer-generated orthogonal expan- 
sion for the subeentrie distribution, has been deposited with the 
British Library Lending Division as Supplementary Publication No. 
SUP 38149 (17 pp.). Copies may be obtained through The 
Executive Secretary, International Union of Crystallography, 5 
Abbey Square, Chester CH1 2HU, England. 

In order to complete the construction of the 
generalized expansion (12) for the subcentric distri- 
bution, we need the theoretical expressions for the 
moments (mean values) of normalized intensity which 
will include the dependence on the factors that call for 
the generalization of (13). In this paper, we shall deal 
with the case of dispersion only which has been studied 
by us in some detail. Of course, (12) with the here 
available polynomials will become a generalization of 
the asymptotic distribution for the case of partial 
symmetry, to symmetries other than triclinic and 
arbitrary compositions, once the corresponding mo- 
ments of z become available. 

Only the terms of (12) with k < 4 have been 
generated, in view of our previous experience with such 
expansions (Shmueli & Wilson, 1981; Shmueli, 1982). 
However, more terms can be readily obtained if need 
arises. 

Effects of dispersion 

Derivations of higher even moments of the structure 
amplitude IFI have been presented and discussed by 
several investigators (e.g. Karle & Hauptman, 1953; 
Hauptman & Karle, 1953; Foster & Hargreaves, 1963; 
Wilson, 1978; Shmueli & Wilson, 1981, 1982; Shmueli, 
1982). As the study of intensity statistics progresses 
and additional factors are taken into account, the need 
is felt for a more general scheme of derivation and for 
reducing the labour involved. The present approach will 
hopefully contribute to the achievement of the first 
objective while the problem of systematizing the 
algebra is dealt with in Appendix A. Since, however, the 
notation of the latter Appendix will be used in this 
subsection, the reader is advised to consult Appendix A 
prior to examining the general expressions for the 
moments of IF1 and z which are derived here. 

The 2nth absolute moment of IFI is given by 

(IFI 2") = ((FF*) n) 

=--Z2"C(S), (22) 

where the symbol ~2, denotes a 2n-fold summation 
which involves indices ranging over the atoms of the 
asymmetric unit, C is a 2n-fold product of atomic 
scattering factors (and their complex conjugates) and S 
is a 2n-fold product of the corresponding trigono- 
metric structure factors (el Shmueli & Wilson, 1981). 
Thus, C and S reflect the composition and symmetry of 
the crystal considered respectively. Since, however, the 
statistical properties of the structure factor and its 
moments (to be understood here as mean values of the 
powers of IF I) are due to the symmetry terms S, the 
actual averaging is performed on the latter quantities 
over a large number of reflections with similar values of 
sin 0/2, and hence the composition terms C in (22) are 
taken as constants in this process. 
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It has been shown that non-vanishing averages (S )  
must be products of mean values of even powers of 
moduli of the trigonometric structure factor (Wilson, 
1978; Shmueli & Kaldor, 1981), usually referred to as 
absolute even moments of this factor. Each such 
product can be formed in a number of different ways 
depending on whether the space group is centro- 
symmetric or noncentrosymmetric (Wilson, 1978; 
Shmueli & Wilson, 1981; Shmueli, 1982). As will be 
seen below, in the centrosymmetric case with the 
scattering factors being possibly complex, the com- 
position terms C can assume several forms for the same 
representations of (S) .  When the multiplicities of the 
C ( S )  arrangements are determined, (22) can be 
decomposed into partial summations as 

(IFlzn) = Z mk Z '  (C(S))k, (23) 
k 

where (C(S))  k is a non-vanishing product arrange- 
ment of the C ( S )  term with multiplicity rn k and ~ t  
denotes an inner partial summation. 

Coming to the present application of the above, a 
typical inner partial summation appearing in the eighth 
moment IFI, with dispersion, is 

~ ~ i f/i 4 fiE f~2 qi Pi Pk. (24) 
i~j:~k 

Here, p and q are the second and fourth absolute 
moments of the trigonometric structure factor respec- 
tively and fj is the complex scattering factor of the jth 
atom. The f-dependent coefficient C = I f/I 4 fj2 fk~2, for 
this summation, can be schematically written as 

( f f *  f f * ) ( f f ) ( f *  f*) ,  (25) 

the parentheses containing those f ' s  for which the 
indices in the original eightfold summation were 
contracted. The number of different ways of placing 
two f ' s  and two f* ' s  in the first group in (25) is 

2 = 36, the remaining two groups being formed in 

one distinct way only. Hence, the multiplicity of (24) in 
(23) with n = 4, is m = 36. There are several other 
possible arrangements of the C term which multiply 
qiPjPk and the sum of the multiplicities of all such 
arrangements must of course equal the number of 
different ways in which the original eight indices could 
be contracted to form the product of moments qi PjPk 
(this number is 210 - cf. Shmueli & Wilson, 1981). 

Table 1 contains the forms of the C and S products 
and the multiplicities of the corresponding partial 
summations for the fourth, sixth and eighth moments of 
IFI, with complex scattering factors. The usual 
designations p, q, r and s for the second, fourth, sixth 
and eighth absolute moments of the trigonometric 
structure factor (Wilson, 1978; Shmueli & Wilson, 
1981, 1982) are employed. 

Each line of the table corresponds to a partial 
summation such as, for example, (24) and the above 
three moments of IFI can be readily written down using 
this table with (23). Moments of IFI for noncentro- 
symmetric space groups are constructed from those 
lines only which contain in the fifth column the 'a and e' 
indicator while all the lines are relevant for the centric 
even moments of I FI. Dispersionless centric moments 
are obtained by replacing I f l  2k, f2k and f ,2k with 
( rea l )  f2k, collecting like terms and accumulating the 
appropriate multiplicities (el. Shmueli & Wilson, 1981). 

In order to obtain useful expressions from which the 
moments of tFI can actually be computed, the partial 
(multiple) summations have to be decomposed into 
single summations which can be more readily inspected 
and evaluated. Methods for doing this were given 
elsewhere (Shmueli & Wilson, 1981; Shmueli, 1982) 
and a more general one which is also suitable to a 
computer-algebraic approach is given in Appendix A. 

Introducing the abbreviations 

I z2=P l f  12, /t4----qlf 14, #6----rlf 16, /zs----slf Is, 

v 2 = p f  2, v 4 = q f  4, 04=ql f lZ  f 2, 06=rl f l 4  f 2, 

(26) 

using the notation of Appendix A and the contents of 
Table 1 with (23), the fourth, sixth and eighth moments 
of IFI, for the centrosymmetric case with complex 
scattering factors, can be written as 

(IFI 4) = 2S2(f12,f12) 4- $2(]~2,~) 4- S1(#4 ) (27) 

(IFI 6) = 6S3(/h,//2,/h ) + 9S3(ltz,Vz, V ~) 

+ 9Sz(lt4,ti z) + 6 Re[Sz(O4,v* )] 

+ S,(//6) (28) 

(IVl 8) = 24S4(f12, f12, f lz , f12)  + 72S4( f12 , f l z , p z ,p*  ) 

4- 9S4(VE,VE,V~,V~) + 72S3(/t4,/ZE,/Z 2) 

4- 36S3(lz4,Vz,V*) + 6 Re[S3(v4, rE,* rE*)] 

+ 96 Re[Sa(O4,1z2,v* )] + 16S2(/z6,/z2) 

4- 12 Re[SE(O6,v* )] + 18S2(/z4,P4 ) 

+ S2(v4,v*) 4- 16S2(04,0~) + S~(/l 8) (29) 

and the corresponding moments of z, required for 
constructing the expression coefficients in (12), with 
n = 4, are given by 

(zk) = (IFI2k)/S~(Ii2), k = 1, ..., 4, (30) 

where S~(/z2) is the average reduced intensity 27. 
The expansion of (27)-(29) into useful com- 

binations and products of single summations has been 
performed, using the decomposition algorithm given in 
Appendix A, with the REDUCE system which was 
employed above for the construction of the required 
orthogonal polynomials. The correctness of these 
readily obtained (but lengthy) expansions was tested in 
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Table 1. Detailed structure o f  the fourth, sixth .and 
eighth absolute moments o f F  [cf equation (29)1 

The order of moment,  2n, appears in the first column and C, ( S )  
are the composition and symmetry  factors respectively in the partial 
summations in (23), while m is the corresponding muptiplicity of  a 
partial summation; f~ is the complex scattering factor of  the ith 
atom, I f/I  is its magnitude and f*/ its complex conjugate; the 
symbols p~, q~, r i and s; denote moments of  the trigonometric 
structure factor of  the ith atom (see text). The fifth column with 
'a and c' shows that the partial summation in this line appears in 
expressions for both acentric and dispersionless centric moments,  
while an entry with 'c' belongs to a centric moment  only. 

2n C ( S )  m a and/or  c 

I f/12 If j  12 PiPj 2 a a n d c  
f2i f]'i 2 PiPj 1 c 
I f/14 qi 1 a and c 

I f i  Z l f i l 2 t A I 2  

I f/141 f i l  2 

I f~ 6 

PiPjPk 6 a and c 
PiPjPk 9 C 
qiPj 9 a and c 
qiPi 3 c 
qipj 3 c 
r~ I a and c 

I f l l2 l f j l21  fkl2 if/12 PiP~PkPt 24 a a n d c  
I f/121 fJ I 2fkJ~t 2 PiPsPkPt 72 c 

J~/J~ f~k 2J~t 2 PtPJPkP, 9 C 
I f t l  41 f j l  21 fk I 2 q~PlPk 72 a and c 
I f/14j~2j f~k 2 qiPyPk 36 c 

f /4~J  2fffk 2 qiPjPk 3 c 

J'~i 4JTJ f~k qtPjPk 3 c 
(I f/12J~2/) I f j  [ 2fffk 2 qiPsPk 48 C 
(I f/I  2ff2) I f/I  2f~ k qiPsPk 48 C 
I f/16 I f i t  2 rip j 16 a a n d c  
(I f t  I '/~l )J~*i 2 r, pj 6 c 
( I f/14.~/2)J)2y rtp j 6 c 

I f/141 fJ 14 qlqj 18 a a n d c  
4 4 J~.f~i qtqj 1 c 

( I f i  12]~i )( I fJ 12~ 2 ) qlqj 16 c 
If/I 8 s t 1 a a n d e  

the same computer run by performing the substitutions 
which should lead to the acentric and dispersionless 
centric moments of the normalized intensity. Thus, 
upon substituting (i) v2 = v4 = 04 = 06 = 0 and (ii) 
1)2 = ~/2'  1)4 = 04 = ]'/4' 06 ~--- ~/6'  the acentric and centric 
moments of z (Shmueli & Wilson, 1981) have been 
recovered, respectively, from the expansions of the 
general expressions (27)-(29) and (30). The expanded 
expressions for the above moments of z, as well as the 
above mentioned tests, form part o f  the deposited 
material. The same expressions, output by R E D U C E  in 
a Fortran-compatible format, were incorporated into a 
program for a numerical evaluation of the subcentric 
version of (12), terminated as described above. 

Thus, apart from eliminating tedious and error-prone 
'hand'  manipulations, and performing work which 
would probably not be attempted to the above extent, 

computer-algebraic routines can also be used to 
advantage in an examination of limiting forms of the 
expressions derived. Obviously, these powerful pro- 
grams must be judiciously employed and, if this 
requirement is satisfied, we believe that the danger of 
'losing sight of the physics' is about the same as that 
inherent in many other computer applications (cf. 
Computers in the New Laboratory - A Nature Survey, 
1981). 

It is interesting to discuss the above tendency of the 
general centric moments to the acentric and dis- 
persionless centric ones by considering the two limiting 
distributions of phases of the atomic scattering factors: 

(i) the phases o f f  are uniform in the (0,2~) interval, 
and 

(ii) the phase is constant. 
Let us expand (27)with the aid of (A3) and (A4) and 

rewrite it in the usual form. 

( I r l  4) = 2 S ~ ( # 2 ) -  2S1(#2 z) + S,(v 2) S(v~) 

- S,(v2v*) + S,(/z4) (31) 

= 2X + I~. pkf212 + ~. (qk-- 3p2k)lfk 14 
k k 

(32) 

(Wilson, 1978). The third term in (31) can be expanded 
as  

S,(v2) S,(v*) = y y pk p,f~ f ,2  
k I 

= Z Z Pk Pt I AI2 l f/12 exp [2i(~0 k -- ~0t)], 
k I 

(33) 

where f = Ifl exp(itp), and in the case of constant 
phasse (~0 k = ~0 t = constant for any k and l), (33) 
reduces to z~ 2 whereupon (32) becomes the dis- 
persionless centric fourth moment of I FI (Wilson, 
1978). Equation (33) can also be rewritten as 

Sl(]~2) SI(p~) = Z p~,l fkl 4 + 2 ~ Y Pk Pt I fk l  2 [ f/12 
k k > l  

× cos 2(~0 k -- ~0t). (34) 

Here, in the case of uniform phase distribution, the 
second summation in (34) is most likely to be zero and 
we have 

S , ( v z )  S l (V*)  = Z p,l AI 4 = S l (J l  2) (35) 
k 

in the uniform-phase limit. Substituting (35) into (31), 
the acentric fourth moment of IFI (Wilson, 1978) is 
obtained. 

The above consideration, apart from being interest- 
ing for its own sake, also serves as a useful check of the 
correctness of the expansions (27)-(29) in terms of 
single summations. 
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Conclusion 

The above derivation of the generalized subcentric 
distribution and its detailed expression for the case of 
dispersion shows this distribution to be the most 
general formalism, so far published in the crystallo- 
graphic literature, which accounts for deviations from 
ideal statistics, caused by factors other than depen- 
dence of the various atomic contributions to the 
structure factor. The generalized subcentric distri- 
bution can thus be regarded as the formal answer to 
problems involving dispersion (Wilson, 1980a), but it 
also constitutes a framework which accommodates 
various important special and limiting generalized 
distributions which have been investigated (Shmueli & 
Wilson, 1981; Shmueli, 1982; Srinivasan & 
Parthasarathy, 1976). It is possible that in actual 
applications the more specialized expressions may be 
more convenient to handle; however, the question of 
the practical aspects of this new distribution must await 
numerical tests of its various possible modes of 
application. 

It is believed that the methods employed in this study 
may be conveniently and, hopefully, profitably applied 
to other areas of intensity and structure-factor 
statistics. Several such investigations are now in 
progress at the authors' laboratories, and one of them is 
concerned with the problem of combining the effects of 
counting statistics (Wilson, 1980b) and 'structural' 
intensity statistics (Shmueli & Wilson, 1981; Shmueli, 
1982) in a single distribution function of the structure 
amplitude. 

One of us (US) is grateful to Mrs Chana Sofer, Mrs 
Judith Kovetz, and to other members of the staff of the 
Tel-Aviv University Computation Center, for valuable 
assistance and advice concerning the implementation 
and use of the R E D U C E  system. 

APPENDIX A 
An algorithm for decomposition of summations 

A recurring problem in the derivation of moments of 
sums of random variables is the decomposition of the 
various partial summations, to which the moments 
reduce, into manageable single summations ( e l  Foster 
& Hargreaves, 1963; Wilson, 1978; Shmueli & Wilson, 
1981; Shmueli, 1982). Although such a decomposition 
merely amounts to adding and subtracting equal terms, 
it may become very cumbersome where higher-order 
summations are to be treated and has certainly been a 
labour-determining factor in various studies. With the 
increasing availability of computer programs which can 
handle well defined algebraic manipulations, this 
tedious and error-prone process can be carried out 
reliably and most rapidly, and yield a result of 
analytical as well as computational significance. 

For example, let us consider a fivefold summation of 
the form 

Z Z Z Z Z x, yjz~ W, Vm, (A 1) 
l-~j¢k~l~m 

where each index has the same range of values but no 
two indices can assume the same value in any of the 
terms of (,4 1). 

By adding and subtracting equal terms, the sum- 
mation (A 1) can be rewritten as 

~m ,(~i Z ~k Z xiY'lZk WI) Um- Z Z Z Z [(xtUi)yjZk ¢j~ ~l i~j~k~m 

-- Xi(YiV/)  Zk Wm -- x iY j (Z  k Vk) Wm - -  x i y j Z k ( W  m Urn)], 

(A2) 

where the index m in the first term in (A 2) may be equal 
to i o r j  or k or l, while i , j ,  k and I are unequal. Clearly, 
the addition takes place in the first term and the 
subtraction in the remaining four. Each of the latter can 
be rewritten as above and so on, until the fivefold 
summation is completely decomposed into single 
summations. 

This simple but lengthy process can be made 
systematic and concise, as shown below. 

Defining an n-tuple summation of the form (,4 1) by 

S,(xl ,  x2 . . . .  , x , ) -  Y y . . .  y xlk x2k2...x,~°, (A3) 
kl~k2 ~kn 

where the indices k I, k 2 . . . .  , k. range over the same 
values but no two indices can be equal in any of the 
terms of (A3), an algorithm for the decomposition of 
such summations can be formulated as follows. 

S2(XI,X2) ~--- Sl( 'X' l )  S l ( X 2 )  - Sl( .Xl-)(2) 

-- ,7'[S,(x~); x 2] (A4) 

S3(xl,x2,x3) = S2(x~,x2) S~(x3) - S2(x~ x3, x2) 

- $2(xi, x2 x3) 

- ~[S2(xl ,x2);  x31 (.45) 

and, in general, 

Sk(Xl,'" ", Xk) = Sk- I (Xl  , ' "  ", Xk- 1) Sl(Xk) 
- Sk_,(x~xt,, x2, ..., xk_~) 

- Sk_~(x~, x2xk . . . . .  xk_~) 

. . . . .  Sk_ l(xl, x2,. . . ,  xk_ i xk) 

=- , ~ [ S k _ l ( x  1, . . . ,  xk_ l); xk]. (A6) 

A comparison of (A4)-(A6) with the more familiar 
(A2) shows immediately that the function of the 
operator ,~" is to add and subtract equal terms while 
lowering the order of the summation involved by one. 
Quantities which appear as products carry the same 
index and the presence of k commas within a symbolic 
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summation means that there are k + 1 unequal indices 
(cf. Shmueli, 1982). 

For example, the decomposition of (A 1) into single 
summations can be symbolically written as follows: 

Ss(x,y,z ,w,v)  = Y[S4(x , y , z ,w) ;  v] 

= , . ~ [ U [ S 3 ( x , y , z ) ;  w]; t3] 

= Y [ Y [ S P [ S E ( X , y ) ; z ] ;  w]; v] 

= 5 ~ [ S P [ Y [ S P [ S , ( x ) ; y ] ;  z]; w]; v]. 

(A7) 

The above process can form the basis for a straight- 
forward calculation but its real advantage lies in the 
adaptability to computer evaluation. In order to 
illustrate this feature, we show the input which is 
required by the L I S P - b a s e d  system R E D U C E  (Hearn, 
1973) for the decomposition of summations, up to a 
fourfold one. The rather self-explanatory code reads: 

OPERATOR S 1, $2, $3, $4; 
FOR ALL X,Y LET S2(X,Y) = S 1 (X) • S I(Y) - 

S I(X • Y); 
FOR ALL X,Y,Z LET S3(X,Y,Z) = S2(X,Y) • 

S I ( Z ) -  S2(X * Z , Y ) -  S2(X,Y * Z); 
FOR ALL X,Y,Z,W LET S4(X,Y,Z,W) = S3(X, 

Y,Z) • S 1 (W) - S3(X • W,Y,Z) - S3(X,Y * 
W , Z ) - S 3 ( X , Y , Z  • W); (A8) 

Once the above 'operators' are defined, a submission of 
an expression, e.g. 

24 * S4(A,A,A,A) + 72 * S4(A,A,B,BS) 

+ 9 * S4(B,B,BS,BS) (A9) 

results in its expansion in terms of single (S1) 
summations, the summands being products of A,B and 
BS and their powers. The expansion can also be 
obtained in the form of a usable Fortran listing which 
can serve its numerical evaluation. Of course, if any 
relationships exist between the quantities which appear 
in the summations, they can be specified and a further 
simplification of the result is obtained. Usual simplifi- 
cations performed by R E D U C E  consist of collecting 
powers and like terms or their products. 

c I --- 1 (B1) 

c2 = (3x 2 -  1)/x 2 (B2) 

C 3 = [3(5x 2 -  3)]/x 2 (B3) 

c4 = [3(35x 4 -  30x 2 + 3)]/x 4, (B4) 

where x = a '/2 and a is defined by (15). Of course, 
c o = 1 since the asymptotic distribution is normalized 
to unity. From (B 1)-(B4) the required polynomials can 
be constructed from (8) and (11), but it will suffice to 
give the coefficients of the powers of z appearing in f l  
and f z .  We obtain 

d l 0 = - - l ,  d a l = l  (B5) 

d20 = (6x 4 -  3x 2 - 1)/x 4, d21 = [ 4 ( - 3 x  2 + 2)]/x 2 

and 

d22 = (2x  2 -  1)/x 2, (B6) 

and the normalization constants follow, using (B1)-- 
(B6) and (11), as 

and 

Kx = x / ( 2 x  2 -- 1) 1/2 (B7) 

K 2 = X4 / [2 (24X 8 -- 48X 6 + 36X 4 -- 13X 2 + 2)1/2]. (B8) 

It is readily seen that the moments (B1)--(B4) tend to 
n! or (2n - 1)!!, and the general polynomials 

f i ( z )  = Kl (dx l  z + dlo ) (B9) 

f2(z) = K2(d22 z 2 + d21 z + d20 ) 

tend to L, , (z)  (not standardized) or 

(B10) 

H z , ( Z / 2  ),/2/[ 2n( 2n),/2l] 

according as a (or x) tend to unity or infinity, respec- 
tively. These lirriits of a correspond to the generalized 
acentric and dispersionless centric distributions (see 
text). 

Regarding the expansion coefficients of the 
generalized distribution (3)[with P t ° ) ( z ) g i v e n  by (13)1, 
the coefficient gl vanishes for any x since (z> = 1 by 
definition and d~l = -d l0  = 1, while g2 assumes the 
forms 

APPENDIX B 

The basic structure of the expressions derived in the 
text can be illustrated by the first few moments and 
polynomials involved. In order to obtain the orthog- 
onal polynomials f~ (z )  and f2(z), associated with the 
asymptotic subcentric distribution (13), we require the 
moments e,, with n _< 4 [e l  (8) and (19).]. These are 
given by 

and 

((z2) -- 2)/2 ( B l l )  

((z 2> -- 3)/[(4!)1/21 (B12) 

in the acentric and dispersionless centric limits respect- 
ively (cf. Shmueli & Wilson, 1981). Analogous results 
follow from the polynomials of orders 3 and 4 in z (cf. 
deposited material). 
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Abstraet 

A generalization of a previously described Gaussian 
growth-disorder model is described. The properties of 
this general model are discussed in relation to the more 
restricted but more easily simulated growth-disorder 
model. Optical diffraction patterns of realizations 
obtained by Monte Carlo procedures are presented for 
two possible applications of the model. The extra 
degree of freedom provided by the generalization 
enables a greater diversity of diffraction patterns to be 
achieved. In particular, it is possible to produce 
realizations having an approximately isotropic corre- 
lation field. The relationship between the Gaussian 
model and the Hosemann paracrystal is discussed. 

1. Introduction 

In previous papers (Welberry, 1977; Welberry, Miller 
& Pickard, 1979; Welberry, Miller & Carroll, 1980; 
Welberry & Carroll, 1982), we have described a series 
of stochastic models of disorder called 'growth-dis- 
order models', which enable the rapid production of 
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optical diffraction masks representing disordered lat- 
tices. Such diffraction masks have been the principal 
tool in a number of studies of disorder phenomena 
reported recently, including orientational disorder in 
molecular crystals (Welberry, Jones & Epstein, 1982), 
cation framework distortions in materials with ferro- 
electric properties (Welberry, 1982), and highly dis- 
ordered lattices known as paracrystals which are used 
in the study of polymers and amorphous materials 
(Welberry, Miller & Carroll, 1980). 

The efficacy of the growth-disorder models for the 
purpose of optical diffraction mask making relies on the 
simple and rapid growth algorithm which enables 
suitably large realizations of disordered lattices con- 
taining predetermined short-range-order properties to 
be produced. The disordered distributions which may 
be produced by this means are, however, not the most 
general possible on a given lattice, and often approxi- 
mations to the desired distribution must be made. 
Access to realizations of more general distributions can 
only be obtained via lengthy Monte Carlo iterative 
procedures and for routine usage such methods are not 
feasible. In this paper we explore some aspects of the 
relationship between a growth-disorder model and its 
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